Modelling studies on the computational function of fast temporal structure in cortical circuit activity.
نویسندگان
چکیده
The interplay between modelling and experimental studies can support the exploration of the function of neuronal circuits in the cortex. We exemplify such an approach with a study on the role of spike timing and gamma-oscillations in associative memory in strongly connected circuits of cortical neurones. It is demonstrated how associative memory studies on different levels of abstraction can specify the functionality to be expected in real cortical neuronal circuits. In our model overlapping random configurations of sparse cell populations correspond to memory items that are stored by simple Hebbian coincidence learning. This associative memory task will be implemented with biophysically well tested compartmental neurones developed by Pinsky and Rinzel . We ran simulation experiments to study memory recall in two network architectures: one interconnected pool of cells, and two reciprocally connected pools. When recalling a memory by stimulating a spatially overlapping set of cells, the completed pattern is coded by an event of synchronized single spikes occurring after 25-60 ms. These fast associations are performed even at a memory load corresponding to the memory capacity of optimally tuned formal associative networks (>0.1 bit/synapse). With tonic stimulation or feedback loops in the network the neurones fire periodically in the gamma-frequency range (20-80 Hz). With fast changing inputs memory recall can be switched between items within a single gamma cycle. Thus, oscillation is not a primary coding feature necessary for associative memory. However, it accompanies reverberatory feedback providing an improved iterative memory recall completed after a few gamma cycles (60-260 ms). In the bidirectional architecture reverberations do not express in a rigid phase locking between the pools. For small stimulation sets bursting occurred in these cells acting as a supportive mechanism for associative memory.
منابع مشابه
(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملEffects of Cortical and Peripheral Electrical Stimulation on Brain Activity in Individuals with Chronic Low Back Pain
Purpose: Neuroscience studies suggest that Chronic Low Back Pain (CLBP) is associated with central sensitization, and maladaptive reorganization of the brain; this introduced a new target for LBP treatment. Studies revealed that cortical and peripheral electrical stimulation can be beneficial in regulating brain neuronal activity. However, there is a scarcity of evidence to support the effects ...
متن کاملEfficient Parameters Selection for CNTFET Modelling Using Artificial Neural Networks
In this article different types of artificial neural networks (ANN) were used for CNTFET (carbon nanotube transistors) simulation. CNTFET is one of the most likely alternatives to silicon transistors due to its excellent electronic properties. In determining the accurate output drain current of CNTFET, time lapsed and accuracy of different simulation methods were compared. The training data for...
متن کاملLaminar circuit organization and response modulation in mouse visual cortex
The mouse has become an increasingly important animal model for visual system studies, but few studies have investigated local functional circuit organization of mouse visual cortex. Here we used our newly developed mapping technique combining laser scanning photostimulation (LSPS) with fast voltage-sensitive dye (VSD) imaging to examine the spatial organization and temporal dynamics of laminar...
متن کاملEyes Open on Sleep and Wake: In Vivo to In Silico Neural Networks
Functional and effective connectivity of cortical areas are essential for normal brain function under different behavioral states. Appropriate cortical activity during sleep and wakefulness is ensured by the balanced activity of excitatory and inhibitory circuits. Ultimately, fast, millisecond cortical rhythmic oscillations shape cortical function in time and space. On a much longer time scale,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of physiology, Paris
دوره 94 5-6 شماره
صفحات -
تاریخ انتشار 2000